Ripple Effect Protocol:
Coordinating Agent Populations

Ayush Chopra'?  Aman Sharma? Feroz Ahmad?  Luca Muscariello®  Vijoy Pandey?
Ramesh Raskar!?

!Massachusetts Institute of Technology 2Project Iceberg  3Cisco

Abstract. Modern Al agents can exchange messages using protocols such as A2A and ACP,
yet these mechanisms emphasize communication over coordination. As agent populations
grow, this limitation produces brittle collective behavior, where individually “smart” agents
converge on poor group outcomes. We introduce the Ripple Effect Protocol (REP), a
coordination protocol in which agents share not only their decisions but also lightweight
sensitivities—signals expressing how their choices would change if key environmental
variables shifted. These sensitivities ripple through local networks, enabling groups to align
faster and more stably than with agent-centric communication alone. We formalize REP’s
protocol specification, separating required message schemas from optional aggregation rules,
and evaluate it across scenarios with varying incentives and network topologies. Benchmarks
across three domains—supply chain cascades (Beer Game), preference aggregation in sparse
networks (Movie Scheduling), and sustainable resource allocation (Fishbanks)—show that
REP improves coordination accuracy and efficiency over A2A by 41-100%, while flexibly
handling multi-modal sensitivity signals from LLMs. By making coordination a protocol-
level capability, REP provides scalable infrastructure for the emerging Internet of Agents.
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1 Introduction

The proliferation of LLM-based agents across web services, enterprise environments, and IoT
devices is creating a new coordination challenge: how can intelligent agents that express reasoning
in natural language coordinate effectively without centralized control? Unlike traditional
multi-agent systems designed for controlled simulations, this emerging "Agentic Web" requires
coordination protocols that work with heterogeneous agents developed independently by different
organizations, each with distinct objectives and reasoning capabilities [32, 35].

Existing coordination approaches assume either centralized design (multi-agent reinforcement
learning [25, 31]), shared global objectives (consensus algorithms) [7, 22], or orchestrated control
(LLM coordination frameworks like MetaGPT [16] and AgentVerse [8]). These paradigms work
within controlled environments but cannot scale to independently owned agents operating across
trust boundaries. Modern agent communication protocols like A2A [14], ACP [5], Agora [19]
SLIM [2] provide message exchange and discovery mechanisms, yet they offer no structured
approach for sharing the reasoning flexibility that underlies agent decisions.

The fundamental challenge is that LLM agents naturally express decision sensitivity through
textual reasoning—assessments like “demand spike seems temporary" or “upstream capacity more
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constraining than downstream orders'—but no coordination protocol exists for systematically
sharing and aggregating such qualitative sensitivities. When agents share only final decisions
without the reasoning flexibility behind them, coordination becomes brittle: locally rational
choices lead to collective failures as agents lack visibility into others’ reasoning processes and
constraints [11, 17, 30].

We introduce the Ripple Effect Protocol (REP), a coordination protocol specifically designed
for LLM-based agents where agents share not only their decisions but also lightweight textual
sensitivities—natural language signals that express how their choices would change if key
environment variables shifted. These sensitivities ripple through local networks via existing
transport protocols like SLIM, enabling groups to align faster and more stably than with
decision-only communication.

REP’s design separates agent cognition from protocol coordination. Agents remain responsible
for local reasoning and policy evaluation using their native LLM capabilities, while the protocol
handles sensitivity aggregation and consensus mechanisms. This separation ensures that REP
can coordinate heterogeneous agents—from different LLM architectures to hybrid rule-based
systems—without constraining their internal decision-making processes.

The key insight underlying REP is that scalable coordination for LLM agents requires
protocol-mediated sharing of decision flexibility rather than structured interaction frameworks.
REP provides this coordination intelligence as a protocol primitive, enabling diverse agents to
align their actions at scale without constraining their natural language reasoning capabilities.

We demonstrate REP across three coordination domains that represent fundamental chal-
lenges in distributed agent systems: supply chain information cascades (Beer Game) [29],
preference aggregation in sparse social networks (movie coordination), and sustainable resource
allocation under competing incentives (Fishbanks) [28]. Across these experiments, REP demon-
strates substantial improvements in coordination accuracy compared to traditional agent-to-agent
communication, while showing how textual sensitivity sharing accommodates the natural lan-
guage reasoning of LLM-based agents.

2 Background and Related Work

2.1 Protocol Stack for LLM Agents

Recent work has produced a set of communication protocols that enable LLM agents to in-
teroperate across platforms. The Model Context Protocol (MCP) standardizes how agents
expose tools and share resources. Cross-agent messaging frameworks such as Google’s Agent-to-
Agent (A2A) [1], IBM’s ACP, the Agent Network Protocol (ANP) [13], and research systems
like Agora [19] support discovery, authenticated capability exchange, and task hand-offs. For
performance-critical settings, SLIM (Secure Low-Latency Interactive Messaging) provides a
gRPC-based transport with multicast and publish-subscribe patterns [2]. These protocols form
the messaging layer of the emerging Agentic Web, analogous to TCP/IP for networking. They
ensure reliable message delivery, routing, and security, but stop short of coordination. While
agents can exchange decisions or reasoning traces, there is no mechanism to aggregate information
or ensure collective convergence. This creates a gap between communication and true multi-agent
coordination.

2.2 Coordination in Multi-agent LLM Systems

Prior work on multi-agent LLMs has focused on centralized orchestration, where frameworks such
as AutoGen [33], MetaGPT [16], CrewAl [20], and Swarm [23] enforce structure through shared
prompts, memory, and control. These systems provide role definitions, task hand-offs, structured
workflows, and stopping criteria. These assumptions work well within a single organization but
do not generalize to open networks where agents are independently owned.

For decentralized settings, teams often reuse the same communication protocols introduced




above (e.g., A2A, ACP, ANP) and rely entirely on the LLMs themselves to negotiate through
free-form reasoning and message exchange. However, without explicit coordination mechanisms,
this approach is fragile: agents fall into infinite loops, oscillating handoffs, or fail to detect
completion [18, 27, 37]. For example, two agents negotiating a task may repeatedly hand it back
and forth, each waiting for confirmation from the other, creating infinite loops that consume
resources without ever reaching completion. These issues worsen as the number of agents grows,
highlighting that message exchange alone cannot ensure progress or stability.

Classical distributed mechanisms—such as consensus protocols [7, 22], voting rules [3, 26],
and auction mechanisms [12] provide such structure in traditional systems but assume static
preferences and shared objectives. They cannot capture the dynamic, textual, and partially
aligned reasoning of LLM agents operating in domains with diverse incentives. Recent studies on
LLM voting and census-level preference aggregation [10, 34] explore some of these mechanisms
in controlled, centralized settings, but real-time decentralized coordination remains an open
challenge. This gap motivates the need for protocols that operate above message exchange to
provide true coordination capabilities. REP addresses this challenge by introducing a dedicated
coordination layer for the Agentic Web, enabling agents to move from merely communicating to
collectively aligning their actions in open, decentralized networks.

2.3 Sensitivity Sharing in Distributed Systems

Sensitivity sharing has long been used to enable coordination without central control. In
distributed optimization, nodes exchange gradients or dual variables rather than final solutions,
as in ADMM and gradient tracking algorithms [6, 21]. In decentralized simulations, agents
similarly exchange lightweight signals that summarize local state instead of sharing full datasets.
This enables global calibration while preserving privacy—for example, contact tracing protocols
that share infection-state updates without revealing individual health data [4, 9].

These approaches assume numerical signals and shared global objectives. In contrast, LLM-
based agents reason in natural language, are independently developed, and often operate with
partially aligned or competing incentives. Existing sensitivity sharing techniques cannot capture
this qualitative reasoning or scale to open, heterogeneous networks. REP builds on this lineage
by leveraging textual sensitivity [36] as a coordination primitive, providing the missing layer
above current messaging protocols and enabling large populations of LLM agents to coordinate
without centralized control.

3 Ripple Effect Protocol

REP introduces a new coordination layer for multi-agent systems, enabling agents to move
beyond merely exchanging messages to aligning their actions in open, decentralized networks.
At its core, REP defines a set of shared coordination variables and a process for sensitivity
sharing, where agents communicate lightweight signals indicating how their decisions would
change under different conditions. These sensitivities are aggregated across local neighborhoods
using either gradient-style updates or LLM-based synthesis, producing a compact coordination
state that guides future decisions. This structure allows diverse LLM agents to coordinate
without centralized control, providing scalability and stability missing from current systems.
REP cleanly decouples internal agent cognition from the external coordination mechanism:

o Agents think: Each agent uses its internal reasoning (LLM or rule-based) to decide on
domain actions and generate sensitivities—signals describing how its decision would change
under different environmental conditions.

e Protocols coordinate: REP manages the exchange and aggregation of these sensitivities,
updating a shared set of coordination variables that influence future decisions.




3.1 Workflow Overview

REP operates over a network G = (V, E'), where each node i € V represents an agent and edges
E indicate direct communication links between neighbors N; = {j € V | (i,j) € E}. Time
proceeds in discrete rounds t = 1,2, ..., with each round consisting of four steps:

1. Receive Messages: Each agent i collects messages M} = {(d% 33-

]7
neighbor decisions dz- and sensitivities sg-.

) : j € N;} containing

2. Generate Decision & Sensitivity: The agent applies its policy m; to the current
coordination variables 6! and private constraints ¢; to produce:
(df. 1) = mi (6], i)

where d! is the domain action (e.g., order quantity, vote, fleet deployment) and s! is a
signal describing how the decision would change if conditions shifted.

3. Aggregate Neighbor Sensitivities: REP combines neighboring sensitivities to update
local coordination variables:

0t = 0! + Aggicn,(sh)

Sensitivities may be numeric or textual, with REP applying either standard optimization
rules or LLM-based synthesis as needed.

4. Consensus (Optional): In domains requiring group agreement, REP applies deterministic
rules such as coordinate-wise median to converge on shared proposals.

Example: In a supply chain, an agent’s decision might be to order 120 units. Its sensitivity
could read: “If demand increases by 10%, increase order by 15 units; if upstream capacity
improves, decrease by 5 units.” These sensitivities are aggregated by neighbors, producing
updated coordination variables like TARGET INVENTORY and ORDER ADJUSTMENT FACTOR, which
then shape the next round’s decisions.

3.2 Coordination and Aggregation

At each round ¢, every agent i maintains a local coordination state 6! that influences its next-
round decision. Using its internal policy m; (6%, ¢;), the agent produces two outputs: a domain
action d! and a sensitivity message st describing how d! would change under counterfactual
conditions. These sensitivities are exchanged among neighbors N; and combined to update the
agent’s local state.

REP frames this process as a generalized gradient step:

0; =0, —n-g,

where 7 is a step size and ¢! is a “gradient-like” signal representing the aggregated influence of
neighboring agents:
g = Aggy ({5} 1 J € Ni}, 07).

The operator Agg, is parameterized by a synthesis function ¢, which determines how
sensitivities are integrated. REP is modality-agnostic: in some domains, ¢ is a numeric rule
such as weighted averaging or distributed gradient descent; in others, ¢ is a language model
that synthesizes free-form reasoning into structured, low-dimensional updates. This approach is
related to recent methods such as TextGrad [36], which treat natural language as a medium for
computing gradient-like updates, but in REP these signals are used to coordinate populations of
agents rather than optimize a single model.




This unified formulation allows REP to seamlessly handle both quantitative and qualitative
coordination signals without changing the overall update rule. For example, S; might encode
either production adjustments in a supply chain or price/time flexibility in group scheduling.

In many domains, these local updates alone are sufficient. However, some tasks require the
entire population to agree on a shared proposal, such as selecting a common meeting time or

price. In these cases, REP adds a second, global consensus step after local aggregation:
0! = Median ({61! : i € V}),

where V is the set of all agents. This coordinate-wise median prevents extreme local outliers
from destabilizing the collective decision while retaining diversity of preferences. The resulting
two-level process enables REP to span a broad spectrum of coordination problems, from local
alignment in sequential supply chains and resource management to explicit consensus formation
in distributed decision-making.

3.3 Implementation Architecture

REP is implemented as a lightweight coordination layer that wraps existing agents without
modifying their internal policies. A REPClient manages message exchange, sensitivity aggrega-
tion, and updates to coordination variables. The design is intentionally modular: the transport
backend, aggregation rule, and consensus mechanism can each be configured independently. This
makes REP portable across domains and independent of any single communication protocol or
decision rule. For example, we use SLIM for multicast messaging and coordinate-wise median
for consensus, but other systems or rules can be substituted without changing the protocol logic.

Configuration Interface. Each agent is initialized by specifying which implementations to
use for these three components:

rep_client = rep.configure(
agent=11lm_agent,

transport="slim", # any messaging backend
updater="textual_grad", # or "numerical_grad"
consensus="median_coordinate" # or other rules

Protocol Execution. During each round, agents run the same loop in parallel: receiving
messages, generating local decisions and sensitivities, broadcasting them to neighbors, and
performing local and (optionally) global aggregation:

# Protocol execution

neighbor_msg, neighbor_sensitivity = rep_client.receive()
rep_client.sync(neighbor_sensitivity) # aggregate neighbor sensitivities
decision, sensitivity = rep_client.decide()
rep_client.send(decision=decision, sensitivity=sensitivity)

When textual aggregation is enabled, domain-specific prompt templates guide the LLM
in synthesizing free-form reasoning into structured updates. This allows the same core proto-
col to support diverse coordination problems—from supply chain optimization to distributed
consensus—without changing agent logic or protocol implementation.

4 Experimental Setup

We evaluate REP across three domains that systematically span different network structures,
incentive patterns, and coordination challenges. The Beer Game models sequential coordination in




linear supply chains (4-8 agents) with aligned incentives but delayed information flows that create
bullwhip effects. Movie Coordination captures consensus formation in sparse social networks
(5—20 agents), where heterogeneous preferences must be reconciled despite limited connectivity.
Fishbanks examines resource allocation in fully connected networks (5-8 agents) with directly
competing incentives, where individual profit maximization conflicts with collective sustainability.
Together, these environments test REP across a spectrum of coordination conditions: information
cascades versus multi-hop influence versus broadcast interactions; aligned, heterogeneous, and
conflicting incentives; and network topologies ranging from linear to sparse to dense.

Table 1 summarizes the core elements of each domain, including the decisions made by
agents, the coordination variables introduced by REP, and the structural properties of each
environment.

Table 1. Agent decision variables, coordination variables, and challenges for each domain.

Domain Agent Deci-| Coord. Vari- | Network Challenge
sions ables

Beer Game Order quanti- | Target inventory | Linear chain Information cas-
ties per round | levels cades and bull-

whip effect

Fishbank Fleet deploy- | Sustainable quotas | Fully con- | Mixed-motive allo-
ment  across nected cation and over-
regions exploitation

Movie Scheduling | Participation | Preferred price/-| Sparse small- | Consensus forma-
(Y/N) or local | time thresholds world network | tion with heteroge-
preference neous preferences
votes

Our baseline represents the current state of practice in open LLM-agent networks. We
use an Agent-to-Agent (A2A) approach where agents share their final decisions and free-form
reasoning traces. This mirrors the message exchange patterns supported by protocols such as
A2A and ACP, and the coordination style seen in multi-agent orchestration frameworks like
MetaGPT, CrewAl, and OpenAl Swarm today. For example, in the Beer Game, an upstream
agent might message, “Ordering 12 units because inventory is low.” While this communication
enables neighbors to understand intent, it cannot be systematically aggregated to update shared
coordination variables. Both REP and the baseline use identical transport, consensus rules,
LLM model, and network topologies, ensuring that performance differences are solely due to
REP’s introduction of structured sensitivity sharing.

All experiments use Claude-3-Haiku-20240307 (temperature = 0.1, max_ tokens = 300) to
ensure consistent reasoning power across conditions. Each simulation runs for 20 rounds, with
3-5 trials per configuration to account for stochasticity. Coordination accuracy is reported using
domain-specific metrics, detailed in the sections describing each experiment. Final results are
aggregated across trials with mean and standard deviation reporting. To validate communication
efficiency, we scale the number of agents from 10 to 200 and measure wall-clock coordination
time. This test demonstrates that REP’s structured design, combined with SLIM’s low-latency
multicast messaging, supports efficient coordination for population scale.

5 Supply Chain Coordination (Beer Game)

The Beer Game [29] is a canonical benchmark for studying coordination failures in sequen-
tial supply chains. It consists of four stages—retailer, wholesaler, distributor, and manufac-
turer—arranged in a linear chain. In each round, every agent observes only its local inventory
and orders from its immediate neighbor, deciding how many units to order upstream. Fixed lead




times delay feedback, meaning agents cannot immediately observe the downstream consequences
of their actions. This limited visibility causes small fluctuations in customer demand to amplify
as they propagate upstream, producing the well-known bullwhip effect [17].

In the baseline Agent-to-Agent (A2A) approach, agents share both order quantities and
free-form reasoning traces describing the rationale behind those decisions. While this helps
neighbors understand why an action was taken, it does not capture how the agent’s behavior
would change under different future conditions. For instance, when a retailer places an unusually
large order and explains it as “inventory low due to a local demand spike,” upstream agents still
lack visibility into whether this action represents a temporary fluctuation or a longer-term shift.
Without explicit modeling of decision flexibility, these free-form messages cannot be aggregated
into a stable shared understanding, leaving the system vulnerable to information cascades and
runaway amplification.

REP introduces structured sensitivity messages, where each agent communicates how
its decision would adapt under key environmental changes. For example, "If demand in-
creases by 10%, increase order by 15 units. If upstream capacity improves, reduce order by
5 units. Current spike seems temporary.” These sensitivities are combined across neighboring
agents into low-dimensional coordination variables, such as TARGET INVENTORY and OR-
DER_ADJUSTMENT FACTOR, which guide subsequent decisions. By circulating structured
decision flexibility rather than only final actions and free-form text, agents gain predictive context
that allows them to distinguish transient noise from structural change, reducing instability.
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Figure 1. Supply chain coordination outcomes over 20 rounds with a demand shock introduced at round
4, where customer demand doubles. (A) Baseline A2A shows persistent bullwhip oscillations as agents
repeatedly over- and under-react to incomplete information. REP reduces total supply chain cost by
41.8%, from $7,300 (A2A) to $4,251 (B) REP rapidly stabilizes within 3-4 rounds, preventing runaway
amplification. (C) REP textual aggregation outperforms numerical aggregation, achieving lower total
costs by capturing richer causal reasoning.

Insight 1: REP mitigates bullwhip effects. Under identical LLM agents and network
structures, REP reduces total supply chain cost by 41.8%, from $7,300 (A2A) to $4,251, and
stabilizes demand shocks within 34 rounds, compared to 10+ rounds under A2A (Fig. 1(a-b)).
REP’s structured signals prevent the repeated over- and under-reactions that drive oscillations
in traditional systems, leading to rapid convergence after initial disturbances.

Insight 2: Textual sensitivities outperform numerical gradients REP supports both
numerical aggregation—where sensitivities are treated as structured derivatives—and textual
aggregation, where natural language reasoning is synthesized into compact updates. Textual
sensitivities yield lower total cost (4,251 vs 4,680, a 9.2% improvement; Fig. 1)(c) by capturing
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Figure 2. Fishbanks simulation with 12 LLM agents over 8 seasons. A demand for fish remains constant
while overharvesting leads to eventual depletion. (A) Fish population dynamics showing delayed resource
collapse under REP compared to rapid decline in the A2A baseline. (B) Sustainability index with a
critical viability threshold at 0.35; REP maintains the resource above this threshold 2 seasons longer than
A2A. (C) Comparison of final outcomes across normalized metrics and profit margins. REP improves
sustainability (+25.2%), population health (4+28.9%), and coordination (+16.1%) while avoiding the
financial losses (-2.5%) experienced by A2A agents. Results averaged over five trials.

nuanced causal relationships, such as supplier behavior or distinguishing short-term volatility
from systemic shifts, that numerical signals cannot express.

6 Resource Allocation (Fishbanks)

Resource allocation under sustainability constraints exemplifies the tragedy of the commons,
where individually rational decisions lead to collectively irrational outcomes [15, 24]. The
Fishbanks simulation models this dynamic through 12 fishing companies operating in shared
waters [28]. Each company aims to maximize profits by deploying its fleet to different fishing
zones, but uncoordinated strategies lead to overfishing and eventual resource collapse, harming
all participants.

In the baseline Agent-to-Agent (A2A) approach, companies share their deployment decisions
and reasoning—such as the number of boats sent to each zone—based on local observations
of catch rates and market prices. Without additional structure, agents cannot determine
whether others are pursuing short-term opportunistic gains or making long-term sustainability
commitments. This information isolation drives competitive escalation: each company acts
defensively, deploying aggressively to avoid being left behind, which accelerates resource depletion.

REP extends this setting by allowing companies to communicate textual sensitivities about
resource conditions and coordination willingness alongside deployment decisions. For example,
“Fish population shows recovery signs based on catch composition. Fleet maintenance costs
justify a conservative approach if others also coordinate.”. These sensitivities capture how
decisions would shift under different environmental or strategic conditions, enabling agents to
infer whether others are willing to restrain harvesting for collective benefit. Aggregating these
signals across companies provides a shared picture of ecosystem health and alignment, supporting
voluntary, decentralized coordination without a central controller.

Insight 3: Coordination under competing incentives. Across 8-season experiments with
12 LLM agents, REP achieves 25.2% sustainability improvement and 28.9% better population
health while preventing the financial losses experienced by A2A agents (-2.5%). This demonstrates
REP’s capability to coordinate in tragedy-of-commons scenarios—the most challenging multi-
agent setting where individual and collective objectives directly conflict. Unlike traditional
approaches that result in resource depletion harming all participants, REP enables win-win
outcomes through voluntary coordination. This is visualized in figure 2

Insight 4: Transparency enables conditional cooperation. The shared sensitivities
include both ecosystem assessments and signals of willingness to cooperate. Companies can




condition their behavior on others’ stated intentions—e.g., “We can maintain a conservative
fleet size if others do the same”. This transparency allows trust to emerge without explicit
enforcement, shifting agents from pure profit-maximization toward coordinated stewardship of
the shared resource.

7 Preference Aggregation (Movie Coordination)

Group decision-making in sparse social networks presents a fundamental coordination challenge:
agents must converge on a shared outcome despite heterogeneous preferences and limited
connectivity. Each agent represents an individual with distinct budget and scheduling constraints,
communicating only with immediate neighbors. As a result, preferences must propagate indirectly
through the network.

In the baseline Agent-to-Agent (A2A) setting, agents exchange their final participation
choices and free-form reasoning. Without structured aggregation, this leads to information
isolation: small clusters of neighbors may agree locally, but there is no mechanism to align the
full network. This produces fragmented, unstable outcomes, where local proposals conflict and
the group fails to converge on a global consensus.

REP introduces a structured preference-sharing process that unfolds in two stages during
each round. In the first stage, every agent communicates both its current participation decision
and a set of preference sensitivities that capture how its utility would change under adjustments
to the shared coordination variables. These sensitivities can take numerical form, such as
0U /Oprice = —0.8 to indicate high price sensitivity, or textual form, such as “Price matters
more than timing — strongly budget constrained.” Messages from neighboring agents are
then aggregated for the two global coordination variables, TIME and PRICE, with local
updates nudging these variables toward values that reflect the collective preference landscape.
In the second stage, agents vote again on the updated proposal, and REP applies a median
consensus rule to produce the next shared state. This consensus mechanism provides stability
by preventing extreme local outliers from destabilizing the group decision. Through repeated
rounds, sensitivities ripple across multiple network hops, allowing the population to converge
even when many agents are not directly connected.
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Figure 3. REP performance under network sparsity and population scaling. (Left) REP maintains
effective coordination even in sparse social networks (30% and 60% sparse), with only gradual increases
in convergence rounds (4 — 6 — 9) while sustaining 70-75% consensus. Stars mark convergence points
where the 70% threshold is reached. In contrast, A2A fails to achieve meaningful coordination even when
fully connected, showing that sensitivity sharing is essential for global alignment. (Right) As population
size grows from 5 to 200 agents, REP continues to converge reliably (3—-15 rounds), while A2A requires
7-10 rounds at small sizes and fails entirely beyond 20 agents (shaded DNF region). Together, these
results demonstrate REP’s robustness to both sparse connectivity and large-scale populations.




Insight 5: Coordination effectiveness across network sparsity. We evaluate REP on
a 20-agent network under three connectivity regimes: fully connected, 30% sparse, and 60%
sparse. REP achieves 70-75% consensus across all conditions (Fig. 3(left)), with only gradual
increases in convergence time: Round 4 — Round 6 — Round 9 as connectivity decreases. This
resilience arises because sensitivity signals propagate indirectly, allowing agents to align even
when some connections are missing. In contrast, A2A fails to reach meaningful agreement,
plateauing at 35% maximum consensus even in fully connected networks. Without structured
aggregation, each agent is overwhelmed by conflicting inputs, leading to cognitive overload and
preventing the system from integrating distributed reasoning into a stable global outcome.

Insight 6: Scalability to larger populations To evaluate REP’s scalability, we increase the
network size from 5 to 200 agents at fixed sparsity. Fig. 3(right) projects the number of rounds
required to reach convergence as population size grows. REP maintains stable performance:
convergence occurs in just 3-9 rounds across the entire range, with only modest growth as the
network scales. In contrast, A2A requires 7-10 rounds even for small populations (<20 agents)
and fails to converge entirely beyond this point, as indicated by the shaded DNF region. Because
per-round message cost grows near-linearly with N under SLIM multicast, fewer rounds directly
translate to lower total communication. Wall-clock profiling further shows that communication
is negligible: at 200 agents, sensitivity sharing is 3% of runtime, with the rest dominated by
LLM inference (38%) and wait time (59%). Thus, REP’s scalability is promising for designing
an agentic web.

8 Conclusion and Future Work

We introduced the Ripple Effect Protocol (REP), a lightweight coordination layer that enables
LLM-based agents to share sensitivities rather than only final decisions. By operating above
existing messaging frameworks like A2A and SLIM, REP turns coordination into a protocol
primitive, allowing diverse agents to align their actions across different network structures,
incentive regimes, and temporal dynamics. Across three domains—supply chains, shared-
resource management, and group decision-making—REP consistently outperformed traditional
decision-only communication by accelerating convergence, improving stability, and enabling
coordination at population scale.

Our current work assumes cooperative, non-malicious agents and synchronous interactions,
which simplifies reasoning but limits applicability to fully open, decentralized networks. Future
work will extend REP along two key directions. First, we plan to develop Byzantine fault-
tolerant mechanisms that allow coordination even when some agents misreport sensitivities or
behave adversarially, ensuring robustness in competitive or adversarial settings. Second, we
will generalize REP to support asynchronous multi-step interactions, where agents operate on
partially overlapping timelines and must integrate information without requiring strict round
synchronization. These enhancements will broaden REP’s applicability to real-world, large-
scale deployments such as financial markets, distributed infrastructure, and cross-organization
collaboration. We will release the REP SDK along with this paper and provide a sandbox
environment to test scalability of coordination and transport protocols. We hope our research
accelerates the development of the Agentic Web.
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